Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 59, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397949

RESUMO

Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO2 thin films on (110)-oriented TiO2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.

2.
Phys Rev Lett ; 125(21): 217401, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274990

RESUMO

SrRuO_{3}, a ferromagnet with an approximately 160 K Curie temperature, exhibits a T^{2}-dependent dc resistivity below ≈30 K. Nevertheless, previous optical studies in the infrared and terahertz range show non-Drude dynamics at low temperatures, which seem to contradict Fermi-liquid predictions. In this work, we measure the low-frequency THz range response of thin films with residual resistivity ratios, ρ_{300K}/ρ_{4K}≈74. At temperatures below 30 K, we find both a sharp zero frequency mode which has a width narrower than k_{B}T/ℏ as well as a broader zero frequency Lorentzian that has at least an order of magnitude larger scattering. Both features have temperature dependences consistent with a Fermi liquid with the wider feature explicitly showing a T^{2} scaling. Above 30 K, there is a crossover to a regime described by a single Drude peak that we believe arises from strong interband electron-electron scattering. Such two channel Drude transport sheds light on reports of the violation of Matthiessen's rule and extreme sensitivity to disorder in metallic ruthenates.

3.
Phys Rev Lett ; 114(1): 016401, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615483

RESUMO

We employ reactive molecular-beam epitaxy to synthesize the metastable perovskite SrIrO(3) and utilize in situ angle-resolved photoemission to reveal its electronic structure as an exotic narrow-band semimetal. We discover remarkably narrow bands which originate from a confluence of strong spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO(6) octahedral rotations. The partial occupation of numerous bands with strongly mixed orbital characters signals the breakdown of the single-band Mott picture that characterizes its insulating two-dimensional counterpart, Sr(2)IrO(4), illustrating the power of structure-property relations for manipulating the subtle balance between spin-orbit interactions and electron-electron interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...